Fluidization

Fluidization plot (log-log)

u_{0} : velocity calculated assuming empty tube
$\underline{\operatorname{Re}_{\underline{m}}}-f_{\underline{m}} \cdot \operatorname{Re}_{\underline{m}}{ }^{2}$ diagram (log-log)

Definition of the modified Re number: $\operatorname{Re}_{\mathrm{m}}=\frac{\mathrm{d}_{\mathrm{p}} \cdot \mathrm{u}_{0} \cdot \rho}{\eta}$
Balanced forces (during fluidization):

$$
\mathrm{f}_{\mathrm{m}} \cdot \operatorname{Re}_{\mathrm{m}}^{2}=\frac{\mathrm{d}_{\mathrm{p}}^{3} \cdot\left(\rho_{\mathrm{p}}-\rho\right) \cdot \rho \cdot \mathrm{g}}{2 \cdot \eta^{2}}
$$

Calculation of pressure drop

General formula

$$
\Delta \mathrm{p}=4 \cdot \mathrm{f}_{\mathrm{m}} \cdot \frac{\mathrm{~L}_{0}}{\mathrm{~d}_{\mathrm{p}}} \cdot \frac{\mathrm{u}_{0}^{2} \cdot \rho}{2}
$$

Ergun formula for packing in rest, $\varepsilon \leq 0.5$:

$$
\Delta \mathrm{p}_{\mathrm{E}}=\frac{1-\varepsilon}{\varepsilon^{3}} \cdot \frac{\mathrm{~L}}{\mathrm{~d}_{\mathrm{p}}} \cdot\left[1.75+\frac{150 \cdot(1-\varepsilon)}{\operatorname{Re}_{\mathrm{m}}}\right] \cdot \mathrm{u}_{0}^{2} \cdot \rho
$$

During fluidization:

$$
\Delta p_{\text {grid }}=L \cdot(1-\varepsilon) \cdot\left(\rho_{p}-\rho\right) \cdot g=L_{0} \cdot\left(\rho_{p}-\rho\right) \cdot g
$$

Note 1.

For solving the problems one has to determine if there is fluidization of not.
a) Based on the chart $\operatorname{Re}_{m}-f_{m} \cdot \operatorname{Re}_{m}{ }^{2}$
b) Based on the relation of $\Delta \mathrm{p}_{\mathrm{E}}$ and $\Delta \mathrm{p}_{\text {grid }}$

If $\quad \Delta \mathrm{p}_{\mathrm{E}}<\Delta \mathrm{p}_{\text {grid }} \quad \rightarrow \quad$ static region (rest) $\quad \Delta \mathrm{p}=\Delta \mathrm{p}_{\mathrm{E}}$
If $\quad \Delta \mathrm{p}_{\mathrm{E}}>\Delta \mathrm{p}_{\text {grid }} \quad \rightarrow \quad$ fluidization region $\quad \Delta \mathrm{p}=\Delta \mathrm{p}_{\text {grid }}$

Note 2.

In case of fixed packing:

- no fluidization
- Constant ε curve in the chart $\operatorname{Re}_{\mathrm{m}}-\mathrm{f}_{\mathrm{m}} \cdot \operatorname{Re}_{\mathrm{m}}{ }^{2}$
- Ergun-formula can be applied everywhere.

Problem 1

A column of diameter 260 mm is filled with spherical ceramic packing ($\rho_{\mathrm{p}}=2400 \mathrm{~kg} / \mathrm{m}^{3}$, $\varepsilon=0.4$) of diameter 2 mm up to the height of 2.4 m . Air stream with pressure 1 bar , temperature $20^{\circ} \mathrm{C}(\eta=0.018 \mathrm{mPas})$, and flow rate $113 \mathrm{~kg} / \mathrm{h}$ enters at the bottom of the column.
How much is the pressure drop over the packing?
Solution
Air density according the ideal gas low

$$
\rho=\frac{\mathrm{p} \cdot \mathrm{M}_{\text {air }}}{\mathrm{R} \cdot \mathrm{~T}}=\frac{10^{5} \mathrm{~Pa} \cdot 29 \frac{\mathrm{~g}}{\mathrm{~mol}}}{8.314 \frac{\mathrm{~J}}{\mathrm{~mol} \cdot \mathrm{~K}} \cdot 293 \mathrm{~K}}=1190 \frac{\mathrm{~g}}{\mathrm{~m}^{3}}=1.19 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}
$$

Air velocity

$$
\begin{aligned}
& \dot{\mathrm{V}}=\frac{\dot{\mathrm{m}}}{\rho}=\frac{113 \frac{\mathrm{~kg}}{\mathrm{~h}}}{1.19 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \cdot 3600 \frac{\mathrm{~s}}{\mathrm{~h}}}=2.64 \cdot 10^{-2} \frac{\mathrm{~m}^{3}}{\mathrm{~s}} \\
& \mathrm{u}_{0}=\frac{\dot{\mathrm{V}}}{\mathrm{~A}_{\text {tube }}}=\frac{\dot{\mathrm{V}}}{\frac{\left(\mathrm{D}_{\text {tube }}\right)^{2} \cdot \pi}{4}}=\frac{2.64 \cdot 10^{-2} \frac{\mathrm{~m}^{3}}{\mathrm{~s}}}{\frac{(0.26 \mathrm{~m})^{2} \cdot \pi}{4}}=0.497 \frac{\mathrm{~m}}{\mathrm{~s}} \\
& \operatorname{Re}_{\mathrm{m}}=\frac{\mathrm{d}_{\mathrm{p}} \cdot \mathrm{v}_{0} \cdot \rho}{\eta}=\frac{2 \cdot 10^{-3} \mathrm{~m} \cdot 0.497 \frac{\mathrm{~m}}{\mathrm{~s}} \cdot 1.19 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}}{1.8 \cdot 10^{-5} \mathrm{Pas}}=65.7
\end{aligned}
$$

Solution 1: based on chart $\operatorname{Re}_{\underline{m}}-f_{\underline{m}} \cdot \operatorname{Re}_{\underline{m}}^{\underline{2}}$
Calculate $\mathrm{f}_{\mathrm{m}} \cdot \mathrm{Re}_{\mathrm{m}}{ }^{2}$ valid at balanced forces

$$
\begin{aligned}
& f_{m} \cdot \operatorname{Re}_{\mathrm{m}}^{2}=\frac{\mathrm{d}_{\mathrm{p}}^{3} \cdot\left(\rho_{\mathrm{p}}-\rho\right) \cdot \rho \cdot \mathrm{g}}{2 \cdot \eta^{2}}=\frac{\left(2 \cdot 10^{-3} \mathrm{~m}\right)^{3} \cdot\left(2400 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}-1.19 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}\right) \cdot 1.19 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \cdot 9.81 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}}{2 \cdot\left(1.8 \cdot 10^{-5} \mathrm{Pas}\right)^{2}} \\
& \mathrm{f}_{\mathrm{m}} \cdot \operatorname{Re}_{\mathrm{m}}^{2}=3.46 \cdot 10^{5}
\end{aligned}
$$

According to the chart, the packing is in rest (because $\operatorname{Re}_{\mathrm{m}}{ }^{*}<\operatorname{Re}_{\mathrm{m}}{ }^{*}=150$)
Use curve $\varepsilon=0.4$ to read $\mathrm{f}_{\mathrm{m}} \cdot \operatorname{Re}_{\mathrm{m}}{ }^{2}$ belonging to $\operatorname{Re}_{\mathrm{m}}=65.7$.

$$
\begin{aligned}
& \mathrm{f}_{\mathrm{m}} \cdot \mathrm{Re}_{\mathrm{m}}^{2}=1.1 \cdot 10^{5} \\
& \mathrm{f}_{\mathrm{m}}=\frac{\left(\mathrm{f}_{\mathrm{m}} \cdot \mathrm{Re}_{\mathrm{m}}^{2}\right)}{\mathrm{Re}_{\mathrm{m}}^{2}}=\frac{1.1 \cdot 10^{5}}{(65.7)^{2}}=25.48 \\
& \Delta \mathrm{p}=4 \cdot \mathrm{f}_{\mathrm{m}} \cdot \frac{\mathrm{~L}_{0}}{\mathrm{~d}_{\mathrm{p}}} \cdot \frac{\mathrm{v}_{0}^{2} \cdot \rho}{2}=4 \cdot \mathrm{f}_{\mathrm{m}} \cdot \frac{\mathrm{~L} \cdot(1-\varepsilon)}{\mathrm{d}_{\mathrm{p}}} \cdot \frac{\mathrm{v}_{0}^{2} \cdot \rho}{2} \\
& \Delta \mathrm{p}=4 \cdot 25.48 \cdot \frac{2.4 \mathrm{~m} \cdot(1-0.4)}{2 \cdot 10^{-3} \mathrm{~m}} \cdot \frac{\left(0.497 \frac{\mathrm{~m}}{\mathrm{~s}}\right)^{2} \cdot 1.19 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}}{2}=1.08 \cdot 10^{4} \mathrm{~Pa}
\end{aligned}
$$

Solution 2: based on the relation of Δp_{E} and $\Delta p_{\text {grid }}$

$$
\begin{aligned}
& \Delta \mathrm{p}_{\mathrm{E}}=\frac{1-\varepsilon}{\varepsilon^{3}} \cdot \frac{\mathrm{~L}}{\mathrm{~d}_{\mathrm{p}}} \cdot\left[1.75+\frac{150 \cdot(1-\varepsilon)}{\mathrm{Re}_{\mathrm{m}}}\right] \cdot \mathrm{v}_{0}^{2} \cdot \rho \\
& \Delta \mathrm{p}_{\mathrm{E}}=\cdot \frac{1-0.4}{0,4^{3}} \cdot \frac{2,4 \mathrm{~m}}{2 \cdot 10^{-3} \mathrm{~m}} \cdot\left[1.75+\frac{150 \cdot(1-0.4)}{65.7}\right] \cdot\left(0.497 \frac{\mathrm{~m}}{\mathrm{~s}}\right)^{2} \cdot 1.19 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}=1.03 \cdot 10^{4} \mathrm{~Pa} \\
& \Delta \mathrm{p}_{\text {grid }}=\mathrm{L} \cdot(1-\varepsilon) \cdot\left(\rho_{\mathrm{p}}-\rho\right) \cdot \mathrm{g}=2.4 \mathrm{~m} \cdot(1-0.4) \cdot\left(2400 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}-1.19 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}\right) \cdot 9.81 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}=3.39 \cdot 10^{4} \mathrm{~Pa}
\end{aligned}
$$

$\Delta \mathrm{p}_{\mathrm{E}}<\Delta \mathrm{p}_{\text {rács }}$, the packing is in rest, therefore

$$
\Delta \mathrm{p}=\Delta \mathrm{p}_{\mathrm{E}}=1.03 \cdot 10^{4} \mathrm{~Pa}
$$

Problem 2

Liquid phase catalytic reaction is performed in a packed column of diameter 80 mm . The catalyst is carried on 3 mm diameter spherical particles of density $2500 \mathrm{~kg} / \mathrm{m}^{3}$. The liquid ($\rho=1200 \mathrm{~kg} / \mathrm{m}^{3}, \eta=1.2 \cdot 10^{-3} \mathrm{Pas}$) is driven bottom up. Total packing weight is 8.5 kg .

Calculate:
a) Initial fluidization velocity $(\varepsilon=0.4)$
b) Carry-out velocity $(\varepsilon=1)$
c) Friction loss (pressure drop) over the packing if the liquid velocity is 20% of the carry-out velocity
d) Packing height if the liquid velocity is 5 times larger than the initial fluidization velocity
e) Pressure drop over the packing at the velocity of d) if the packing is fixed in place from above

Solution

a) Initial fluidization velocity $(\varepsilon=0.4)$

Calculate $f_{m} \cdot \operatorname{Re}_{m}{ }^{2}$ valid at balanced forces

$$
\begin{aligned}
& \mathrm{f}_{\mathrm{m}} \cdot \operatorname{Re}_{\mathrm{m}}^{2}=\frac{\mathrm{d}_{\mathrm{p}}^{3} \cdot\left(\rho_{\mathrm{p}}-\rho\right) \cdot \rho \cdot \mathrm{g}}{2 \cdot \eta^{2}}=\frac{\left(3 \cdot 10^{-3} \mathrm{~m}\right)^{3} \cdot\left(2500 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}-1200 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}\right) \cdot 1200 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \cdot 9.81 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}}{2 \cdot\left(1.2 \cdot 10^{-3} \mathrm{Pas}\right)^{2}} \\
& \mathrm{f}_{\mathrm{m}} \cdot \operatorname{Re}_{\mathrm{m}}^{2}=1.43 \cdot 10^{5} \\
& \operatorname{At~}_{\mathrm{m}} \cdot \operatorname{Re}_{\mathrm{m}}^{2}=1.43 \cdot 10^{5} \text { and } \varepsilon=0.4: \\
& \operatorname{Re}_{\mathrm{m}}^{*}=80 \\
& \operatorname{Re}_{\mathrm{m}}=\frac{\mathrm{d}_{\mathrm{p}} \cdot \mathrm{u}_{0} \cdot \rho}{\eta} \\
& \mathrm{u}_{0}^{*}=\frac{\operatorname{Re}_{\mathrm{m}}^{*} \cdot \eta}{\mathrm{~d}_{\mathrm{p}} \cdot \rho}=\frac{80 \cdot 1.2 \cdot 10^{-3} \mathrm{Pas}}{3 \cdot 10^{-3} \mathrm{~m} \cdot 1200 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}}=2.67 \cdot 10^{-2} \frac{\mathrm{~m}}{\mathrm{~s}}
\end{aligned}
$$

b) Carry-out velocity $(\varepsilon=1)$

$$
\text { At } \mathrm{f}_{\mathrm{m}} \cdot \operatorname{Re}_{\mathrm{m}}^{2}=1.43 \cdot 10^{5} \text { and } \varepsilon=1
$$

$$
\operatorname{Re}_{\mathrm{m}}^{* *}=800
$$

$$
\mathrm{u}_{0}^{* *}=\frac{\mathrm{Re}_{\mathrm{m}}^{* * *} \cdot \eta}{\mathrm{~d}_{\mathrm{p}} \cdot \rho}=\frac{800 \cdot 1.2 \cdot 10^{-3} \mathrm{Pas}}{3 \cdot 10^{-3} \mathrm{~m} \cdot 1200 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}}=0.267 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

c) Friction loss (pressure drop) over the packing if the liquid velocity is 20% of the carryout velocity
Actual velocity:
$\mathrm{u}_{0}=0.2 \cdot \mathrm{u}_{0}^{* *}=0.2 \cdot 0.267 \frac{\mathrm{~m}}{\mathrm{~s}}=5.34 \cdot 10^{-2} \frac{\mathrm{~m}}{\mathrm{~s}}$
$\mathrm{u}_{0}=5.34 \cdot 10^{-2} \frac{\mathrm{~m}}{\mathrm{~s}}>2.67 \cdot 10^{-2} \frac{\mathrm{~m}}{\mathrm{~s}}=\mathrm{u}_{0}^{*}$, thus the packing is fluidized. Therefore the pressure drop equals the grid pressure.

Reduced packing height is needed for calculating the grid pressure. This can be obtained from the mass of the packing.

Net volume of the packing:

$$
\mathrm{V}_{\text {packing }}=\frac{\mathrm{m}_{\text {packing }}}{\rho_{\mathrm{p}}}=\frac{8.5 \mathrm{~kg}}{2500 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}}=3.4 \cdot 10^{-3} \mathrm{~m}^{3}
$$

Reduced packing height:
$\mathrm{V}_{\text {packing }}=\mathrm{L}_{0} \cdot \mathrm{~A}_{\text {tube }}=\mathrm{L}_{0} \cdot \frac{\mathrm{D}_{\text {tube }}^{2} \cdot \pi}{4}$
$\mathrm{L}_{0}=\frac{\mathrm{V}_{\text {packing }}}{\mathrm{A}_{\text {tube }}}=\frac{\mathrm{V}_{\text {packing }}}{\frac{\mathrm{D}_{\text {tube }}^{2} \cdot \pi}{4}}=\frac{3.4 \cdot 10^{-3} \mathrm{~m}^{3}}{\frac{(0.08 \mathrm{~m})^{2} \cdot \pi}{4}}=0.676 \mathrm{~m}$
Grid pressure:
$\Delta \mathrm{p}=\Delta \mathrm{p}_{\text {grid }}=\mathrm{L} \cdot(1-\varepsilon) \cdot\left(\rho_{\mathrm{p}}-\rho\right) \cdot \mathrm{g}=\mathrm{L}_{0} \cdot\left(\rho_{\mathrm{p}}-\rho\right) \cdot \mathrm{g}$
$\Delta \mathrm{p}=0.676 \mathrm{~m} \cdot\left(2500 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}-1200 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}\right) \cdot 9.81 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}=8.6 \cdot 10^{3} \mathrm{~Pa}$
d) Packing height if the liquid velocity is 5 times larger than the initial fluidization velocity Actual ε is to be determined.

Actual velocity:
$\mathrm{u}_{0}=5 \cdot \mathrm{u}_{0}^{*}=5 \cdot 2.67 \cdot 10^{-2} \frac{\mathrm{~m}}{\mathrm{~s}}=0.1335 \frac{\mathrm{~m}}{\mathrm{~s}}$
$\operatorname{Re}_{\mathrm{m}}=\frac{\mathrm{d}_{\mathrm{p}} \cdot \mathrm{u}_{0} \cdot \rho}{\eta}=\frac{3 \cdot 10^{-3} \mathrm{~m} \cdot 0.1335 \frac{\mathrm{~m}}{\mathrm{~s}} \cdot 1200 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}}{1.2 \cdot 10^{-3} \mathrm{Pas}}=400$
At $\mathrm{f}_{\mathrm{m}} \cdot \operatorname{Re}_{\mathrm{m}}^{2}=1.43 \cdot 10^{5}$ and $\operatorname{Re}_{\mathrm{m}}=400: \varepsilon=0.8$.
Packing height from reduced packing height:

$$
\begin{aligned}
& \mathrm{L}_{0}=\mathrm{L} \cdot(1-\varepsilon) \\
& \mathrm{L}=\frac{\mathrm{L}_{0}}{(1-\varepsilon)}=\frac{0.676 \mathrm{~m}}{(1-0.8)}=3.38 \mathrm{~m}
\end{aligned}
$$

e) Pressure drop over the packing at the velocity of d) if the packing is fixed in place from above

No fluidization in this case, and $\varepsilon=0.4$.
Actual packing height:

$$
\mathrm{L}=\frac{\mathrm{L}_{0}}{(1-\varepsilon)}=\frac{0,676 \mathrm{~m}}{(1-0.4)}=1.127 \mathrm{~m}
$$

Ergun-formula:

$$
\begin{aligned}
& \Delta \mathrm{p}_{\mathrm{E}}=\frac{1-\varepsilon}{\varepsilon^{3}} \cdot \frac{\mathrm{~L}}{\mathrm{~d}_{\mathrm{p}}} \cdot\left[1.75+\frac{150 \cdot(1-\varepsilon)}{\mathrm{Re}_{\mathrm{m}}}\right] \cdot \mathrm{v}_{0}^{2} \cdot \rho \\
& \Delta \mathrm{p}_{\mathrm{E}}=\frac{1-0.4}{0.4^{3}} \cdot \frac{1.127 \mathrm{~m}}{3 \cdot 10^{-3} \mathrm{~m}} \cdot\left[1.75+\frac{150 \cdot(1-0.4)}{400}\right] \cdot\left(0.1335 \frac{\mathrm{~m}}{\mathrm{~s}}\right)^{2} \cdot 1200 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}=1.48 \cdot 10^{5} \mathrm{~Pa}
\end{aligned}
$$

Problem 3

Polimer beads are dried with air, in a fluidizing dryer.
Data:

$$
\begin{array}{ll}
\mathrm{d}_{\mathrm{p}}=2 \mathrm{~mm} & \\
\rho_{\mathrm{p}}=1150 \mathrm{~kg} / \mathrm{m}^{3} & \rho=1.061 \mathrm{~kg} / \mathrm{m}^{3} \\
\varepsilon=0.4 & \eta=2 \cdot 10^{-5} \mathrm{Pas}
\end{array}
$$

Quantities to be determined:
a) Initial fluidization velocity
b) Grid pressure at reduced packing height 2 m

Solution

a) Initial fluidization velocity

Calculate $f_{m} \cdot \operatorname{Re}_{m}{ }^{2}$ at balanced forces

$$
\begin{aligned}
& \mathrm{f}_{\mathrm{m}} \cdot \operatorname{Re}_{\mathrm{m}}^{2}=\frac{\mathrm{d}_{\mathrm{p}}^{3} \cdot\left(\rho_{\mathrm{p}}-\rho\right) \cdot \rho \cdot \mathrm{g}}{2 \cdot \eta^{2}}=\frac{\left(2 \cdot 10^{-3} \mathrm{~m}\right)^{3} \cdot\left(1150 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}-1.061 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}\right) \cdot 1.061 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \cdot 9.81 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}}{2 \cdot\left(2 \cdot 10^{-5} \mathrm{Pas}\right)^{2}} \\
& \mathrm{f}_{\mathrm{m}} \cdot \operatorname{Re}_{\mathrm{m}}^{2}=1.2 \cdot 10^{5}
\end{aligned}
$$

At $\mathrm{f}_{\mathrm{m}} \cdot \operatorname{Re}_{\mathrm{m}}^{2}=1.2 \cdot 10^{5}$ and $\varepsilon=0.4$:
$\operatorname{Re}_{\mathrm{m}}^{*}=70$
$\operatorname{Re}_{\mathrm{m}}^{*}=\frac{\mathrm{d}_{\mathrm{p}} \cdot \mathrm{u}_{0}^{*} \cdot \rho}{\eta}$
$\mathrm{u}_{0}^{*}=\frac{\mathrm{Re}_{\mathrm{m}}^{*} \cdot \eta}{\mathrm{~d}_{\mathrm{p}} \cdot \rho}=\frac{70 \cdot 2 \cdot 10^{-5} \mathrm{Pas}}{2 \cdot 10^{-3} \mathrm{~m} \cdot 1.061 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}}=0.66 \frac{\mathrm{~m}}{\mathrm{~s}}$
b) Grid pressure at reduced packing height 2 m

$$
\begin{aligned}
& L_{0}=2 \mathrm{~m} \\
& \Delta p_{\text {grid }}=\mathrm{L} \cdot(1-\varepsilon) \cdot\left(\rho_{\mathrm{p}}-\rho\right) \cdot \mathrm{g}=\mathrm{L}_{0} \cdot\left(\rho_{\mathrm{p}}-\rho\right) \cdot \mathrm{g} \\
& \Delta p_{\text {grid }}=2 \mathrm{~m} \cdot\left(1150 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}-1.061 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}\right) \cdot 9.81 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}=2.25 \cdot 10^{4} \mathrm{~Pa}
\end{aligned}
$$

